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Abstract

A micro-blowing technique (MBT) experiment was
conducted in the Advanced Nozzle and Engine
Components Test Facility1 at the NASA Lewis Research
Center. The objectives of the test were to evaluate the
pressure-drag penalty associated with the MBT and to
provide additional information about the porous plates
used for micro-blowing. The results showed that 1 of 12
plates tested could reduce the total drag (skin-friction drag
plus pressure drag) below a solid flat plate value. The
results of this experiment and prior data showed that a total
drag reduction below a solid flat plate value was possible.
More tests are needed to find an optimal MBT skin and to
find a technique to reduce pressure drag.

Symbols

Aa surface area of airfoil

As total surface area of two test plates

Cd drag coefficient,  (total drag force)/(1/2 ρ∞u∞
2Aa)

Cd0 drag coefficient of solid flat plate

Cdw0 drag coefficient of porous plate without blowing

F blowing fraction, (ρbvb)/(ρ∞u∞)

Re/m Reynolds number per meter

ρb blowing air density

vb average blowing air velocity

ρ∞ free stream density

u∞ free stream velocity

Introduction

A proof of concept experiment (phase I) for reducing
skin friction, using the micro-blowing technique, was
tested in July and August, 1995 in the Advanced Nozzle

and Engine Components Test Facility1 at the NASA
Lewis Research Center. The test results were reported in
Ref. 2. The results from phase I showed that the MBT
could reduce skin friction significantly for subsonic flow,
especially for flow with a low Reynolds number.

In order to assess the pressure-drag penalty associated
with the MBT, an assessment  experiment (phase II) was
conducted in the same test facility in August through
November, 1996. Test plates were installed on both sides of
a constant thickness airfoil. The airfoil was mounted on a
balance so that the total drag, pressure drag, and skin-
friction drag, could be measured directly. The Mach
numbers tested were  from 0.35 to 0.7 (Re/m = 1.96(10)6

to 4.23(10)6) and the exit pressure of the wind tunnel was
set at a constant pressure of 0.24 atm (corresponding to
10.7 km altitude). The experiment results are presented
herein.

Test Model

A constant thickness airfoil, with the thickness of
2.03 cm, height of 13.7 cm, and length of 45.72 cm, was
designed using the NPARC Navier-Stokes code3 so that
the flow was not separated at a  Mach number of 0.7. Tufts
were used for flow visualization at Mach  0.7 to ensure that
the flow remained attached. The airfoil was vertically
installed on the top of a balance and a gap of 0.2 mm
between the airfoil and the tunnel floor was carefully
checked before the test. Figure 1 is a sketch showing the
plate on the airfoil. In this figure, the front and the top wall
of the wind tunnel are removed for a clear view of the test
plate and the airfoil. The rectangular porous plates are
12.36 by 25.06 cm and were installed on both sides of the
flat section of the airfoil, 5.08 cm from the leading edge
(Fig. 1). The location of the plates was in the constant
pressure region for most of the flow conditions.

Plates Tested

The test plates were constructed of two layers. For all
the plates, the inner layer was a 30-microns, high-density,
polyethylene porous plate, which was glued to the outer
layer around the edge of the plate. The outer layers tested
are listed in Table I. Most of the outer layers were provided
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by Northrop Grumman Corporation. The LARC1 plate
was provided by NASA Langley Research Center. It was
laser drilled and the shape of the hole was irregular.

The test plates used in this experiment were slightly
different from the test plates used in  phase I. The phase I
plates had a gap of 0.762 mm between the outer layer and
the inner layer; however, based on the test results from
Walkinson4, we speculated that more skin-friction
reduction could have been achieved in the phase I test if
there were no gap between the two layers. Therefore, there
was no gap for the phase II test plates as shown in Fig. 2.
Moreover, the thickness of the phase II inner layer was
3.175 mm instead of the 9.14 mm used for the phase I test
plates.

Test Facility

The Advanced Nozzle and Engine Components Test
Facility1 was modified for this experiment. A constant
rectangular cross-section duct (20.32-cm wide, 14.22-cm
high, and 76.2-cm long) replaced the usual test article. A
12.7-cm-long transition duct was used to connect the test
section to the facility.

Instrumentation

Figure 3 shows the experiment setup and the locations
of the balance and the test model. A load cell with a
maximum capacity of  4536 grams was used. The accuracy
of the load cell, based on the manufacturer’s specification,
was ±0.25 percent. There was an opening on the tunnel
floor in the shape of the airfoil. Because the airfoil cannot
touch the tunnel floor, there was a small gap of 0.2 mm
between them. Sixteen Pitot static tubes were installed at
a location 2.54 cm from the exit plane, as shown in Fig. 1.
Because there were not enough rakes inside the wake of
the airfoil and the measurements were unsteady, the data
from these rakes were not usable. There was a total
pressure tube, a thermocouple, and a static pressure tap
installed on the side wall for measurement of the free-
stream Mach number at the leading edge of the test plates.

A 1500-standard-liter/min (SLM) flowmeter was used
to measure the flow rate of blowing air.

Calibration

The internal load cell shown in Fig. 4 was used to
measure the total force (Fdrag) on the airfoil. The indicated
force from this load cell, however, is reduced by the
friction force of the balance support and bearings as

Findicated  = Fdrag  – Ffric

In order to estimate the magnitude of the friction
force, a calibration load (Fcalib) was applied to the balance
through an identical, external reference load cell. The
external load cell was connected to the balance with a
straight lightweight rod that was removed after calibration.
The calibration was performed with no wind tunnel flow.
The actual load on the balance (either Fdrag or Fcalib) is
equal to the indicated load  (internal cell) plus the friction
load

Factual = Findicated + Ffric

The internal load cell was calibrated for all test plates.
A typical calibration curve is shown in Fig. 5. The
calibration curve is linear and passes through the origin.

Test Matrix

The test plates were tested at 5 Mach numbers: 0.35,
0.4, 0.5, 0.6, and 0.7. The exhaust pressure used was
0.24 atm. The micro-blowing flow rates for the test plates
are listed in Table II.

Results and Discussion

To establish a baseline drag coefficient, two plain,
stainless-steel, flat plates without holes were installed on
both sides of the airfoil (Fig. 1) and were tested first. The
total drag (pressure drag and skin-friction drag) coefficient,
Cd0, was measured and was considered as a reference drag
coefficient. The drag coefficients, Cd, were measured at
the different Mach numbers for different porous test plates.
The drag ratios, Cdw0/Cd0, for unblown cases are shown in
Fig. 6.

Only two plates ( LARC1 and GAC1897) out of the
12 plates had low drag ratios such that the drag reduction
below a flat plate value was considered possible.

Before presenting more experiment results, the
meaning of three slopes of a curve, as shown in Fig. 7,
needs to be explained.

There are three possible slopes for a drag ratio curve
as indicated in Fig. 7. Zero slope indicates that the rate of
pressure-drag increase and the rate of skin-friction
reduction are equal and that they cancel each other without
a net total drag reduction. A positive slope implies that the
rate of pressure-drag increase is larger than the rate of
skin-friction reduction. A negative slope indicates that the
rate of pressure-drag increase is less than the rate of skin-
friction reduction and it shows a net total drag reduction.



NASA TM–113174 3

Because of the low unblown drag ratio, plates LARC1
and GAC1897 were chosen for presenting the experiment
results. The drag ratios for the LARC1 plate are shown in
Fig. 8.

The drag ratio of 1.00 indicates that the drag of a
porous plate is the same as that of a solid flat plate. In
Fig. 8, the LARC1 plate did not go below 1.00 for all Mach
numbers and blowing rates. The porosity (percent of open
area) of the LARC1 plate is only 1.1 percent. The MBT
was not effective for this extremely low-porosity plate and
the drag reduction below a solid flat plate value  was not
achieved.

The other low unblown drag ratio was for the
GAC1897 plate and the drag ratios of this plate are shown
in Fig. 9.

The GAC1897 plate had slightly higher unblown
drag ratios than those of the LARC1 plate, however, the
MBT can reduce the total drag below a flat plate value for
Re/m of 1.96 and 2.26×106. Keep in mind that the total drag
coefficient, Cd, includes the pressure drag and the skin-
friction drag. Figure 9 shows that the GAC1897 plate did
achieve a total drag reduction of 2.2 percent below a solid
flat plate skin-friction value at a Mach number of 0.35.
Since the area of the blowing plates was about 50 percent
of the total airfoil surface area and the skin-friction drag is
about half of the total drag, the total drag reduction seen in
Fig. 9 should be very small. The error of Cd is about
±1.4(10)–5.

For higher Reynolds numbers, this plate did not reduce
the skin friction below a solid flat plate value (Fig. 9). This
was caused by the limitation of the facility. The small test
cross section of  14.22 by 20.32 cm and the airfoil cross
section of 2.03 by 13.7 cm resulted in the model blockage
of 9.6 percent. Besides, the higher skin friction of the wall
and airfoil, and the addition of blowing air, made the
boundary layer thicker inside the test section for high
Reynolds numbers (Mach = 0.7), and as a result, the static
pressure at the wall was decreased as shown in Fig. 10.
Consequently, the pressure on  the rear half of the airfoil is
lower than that of a free flight environment. Therefore, the
pressure-drag penalty was overestimated and the total
drag reduction was not achieved. It is believed that if the
tests were conducted in a larger facility, the total drag
reduction for higher Reynolds numbers could have been
achieved.

In the phase I experiment, the NASA PN2 plate did
achieve 25 percent more reduction in skin friction than
GAC1897. However, because of  the cost of the PN2, it

was not tested in the phase II experiment.  It would be
possible to achieve higher total drag reduction if a more
effective plate were tested.

Suggestion for Finding an Optimal MBT Plate

The best plate out of each group (Table I), such as a
group of slotted holes, was selected and the drag coefficients
were normalized with respect to the drag coefficient of the
same porous plate without blowing, Cdw0. The results
show the effectiveness of micro-blowing for the different
types of porous plates. The result is shown in Fig. 11 for
the Mach number of 0.35. The GAC1897 plate had the
lowest Cd /Cdw0 value at the blowing fraction of 0.0025.
Therefore, the GAC1897 plate is considered the most
effective plate of the 12 plates tested. It is very encouraging
to see a clear trend of the total drag reduction for all porous
plates that have a blowing fraction of less than 0.0025.  For
the micro-blowing flow fraction less than 0.0025, the skin-
friction reduction outweighted the pressure-drag increase,
and total drag reduction was achieved. However, when the
blowing air exceeded 0.0025, the total drag started to increase.
Since all porous plates effectively reduce the total drag from
the unblown drag for the micro-blowing flow rate (F <
0.0025),  the unblown drag is one of the most important
parameters for finding an optimal MBT plate. Only the
porous plate with the unblown drag not too much higher
than the drag of a solid flat plate could reduce the drag
below a solid flat plate value by using the MBT.

Concluding Remarks

The phase II experiment of the micro-blowing
technique for reducing skin friction has been completed.
The results showed that there existed a maximum micro-
blowing flow rate below which the skin-friction reduction
outweights the pressure-drag penalty, and total drag
reduction was achieved. The pressure-drag penalty for a
high-Reynolds-number flow was large caused by the
blockage effect in the wind tunnel, and as a consequence,
the total drag did not reduce below that of a solid flat plate
value. Only one out of the 12 plates tested had an unblown
total drag ratio so low that the reduction below a solid flat
plate value was achieved after paying the penalty of the
pressure- drag increase. More reduction in total drag could
have been achieved if the PN2 plate (the best plate from
the phase I test) had been tested. Several  techniques to
reduce the pressure-drag penalty have been proposed. One
of the techniques, the combination of micro-blowing and
micro-suction, will be tested in the near future. The search
for an optimal MBT plate is continuing and a passive
micro-blowing technique could be the final goal of this
promising technique.
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